Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Oral Investig ; 27(Suppl 1): 33-44, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2305585

ABSTRACT

OBJECTIVES: Aerosols and splatter are routinely generated in dental practice and can be contaminated by potentially harmful bacteria or viruses such as SARS-CoV-2. Therefore, preprocedural mouthwashes containing antiseptic agents have been proposed as a potential measure for infection control in dental practice. This review article aims to summarize the clinical (and, if insufficient, preclinical) evidence on preprocedural mouthwashes containing antiseptic agents and to draw conclusions for dental practitioners. METHODS: Literature on preprocedural mouthwashes for reduction of bacterial or viral load in dental aerosols was searched and summarized. RESULTS: Preprocedural mouthwashes, particularly those containing chlorhexidine digluconate (CHX), cetylpyridinium chloride (CPC), or essential oils (EO), can significantly reduce the bacterial load in dental aerosols. With respect to viruses such as HSV-1, there are too little clinical data to draw any clear recommendations. On the other hand, clinical data is consolidating that CPC-containing mouthwashes can temporarily reduce the intraoral viral load and infectivity in SARS-CoV-2 positive individuals. Nevertheless, potential risks and side effects due to regular antiseptic use such as ecological effects or adaptation of bacteria need to be considered. CONCLUSIONS: The use of preprocedural mouthwashes containing antiseptics can be recommended according to currently available data, but further studies are needed, particularly on the effects on other viruses besides SARS-CoV-2. When selecting a specific antiseptic, the biggest data basis currently exists for CHX, CPC, EO, or combinations thereof. CLINICAL RELEVANCE: Preprocedural mouthwashes containing antiseptics can serve as part of a bundle of measures for protection of dental personnel despite some remaining ambiguities and in view of potential risks and side effects.


Subject(s)
Anti-Infective Agents, Local , COVID-19 , Oils, Volatile , Humans , Mouthwashes/therapeutic use , Dentists , SARS-CoV-2 , COVID-19/prevention & control , Professional Role , Respiratory Aerosols and Droplets , Anti-Infective Agents, Local/therapeutic use , Chlorhexidine/therapeutic use , Bacteria , Infection Control , Dentistry , Cetylpyridinium/therapeutic use
2.
Antibiotics (Basel) ; 11(5)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1875459

ABSTRACT

Despite the wide-spread use of antiseptics in dental practice and oral care products, there is little public awareness of potential risks associated with antiseptic resistance and potentially concomitant cross-resistance. Therefore, the aim of this study was to investigate potential phenotypic adaptation in 177 clinical isolates of early colonizers of dental plaque (Streptococcus, Actinomyces, Rothia and Veillonella spp.) upon repeated exposure to subinhibitory concentrations of chlorhexidine digluconate (CHX) or cetylpyridinium chloride (CPC) over 10 passages using a modified microdilution method. Stability of phenotypic adaptation was re-evaluated after culture in antiseptic-free nutrient broth for 24 or 72 h. Strains showing 8-fold minimal inhibitory concentration (MIC)-increase were further examined regarding their biofilm formation capacity, phenotypic antibiotic resistance and presence of antibiotic resistance genes (ARGs). Eight-fold MIC-increases to CHX were detected in four Streptococcus isolates. These strains mostly exhibited significantly increased biofilm formation capacity compared to their respective wild-type strains. Phenotypic antibiotic resistance was detected to tetracycline and erythromycin, consistent with the detected ARGs. In conclusion, this study shows that clinical isolates of early colonizers of dental plaque can phenotypically adapt toward antiseptics such as CHX upon repeated exposure. The underlying mechanisms at genomic and transcriptomic levels need to be investigated in future studies.

3.
Microorganisms ; 10(3)2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1765793

ABSTRACT

Despite the widespread use of antiseptics such as chlorhexidine digluconate (CHX) in dental practice and oral care, the risks of potential resistance toward these antimicrobial compounds in oral bacteria have only been highlighted very recently. Since the molecular mechanisms behind antiseptic resistance or adaptation are not entirely clear and the bacterial stress response has not been investigated systematically so far, the aim of the present study was to investigate the transcriptomic stress response in Streptococcus mutans after treatment with CHX using RNA sequencing (RNA-seq). Planktonic cultures of stationary-phase S. mutans were treated with a sublethal dose of CHX (125 µg/mL) for 5 min. After treatment, RNA was extracted, and RNA-seq was performed on an Illumina NextSeq 500. Differentially expressed genes were analyzed and validated by qRT-PCR. Analysis of differential gene expression following pathway analysis revealed a considerable number of genes and pathways significantly up- or downregulated in S. mutans after sublethal treatment with CHX. In summary, the expression of 404 genes was upregulated, and that of 271 genes was downregulated after sublethal CHX treatment. Analysis of differentially expressed genes and significantly regulated pathways showed regulation of genes involved in purine nucleotide synthesis, biofilm formation, transport systems and stress responses. In conclusion, the results show a transcriptomic stress response in S. mutans upon exposure to CHX and offer insight into potential mechanisms that may result in development of resistances.

4.
Clin Oral Investig ; 24(10): 3707-3713, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1384470

ABSTRACT

OBJECTIVES: SARS-CoV-2 is mainly transmitted by inhalation of droplets and aerosols. This puts healthcare professionals from specialties with close patient contact at high risk of nosocomial infections with SARS-CoV-2. In this context, preprocedural mouthrinses with hydrogen peroxide have been recommended before conducting intraoral procedures. Therefore, the aim of this study was to investigate the effects of a 1% hydrogen peroxide mouthrinse on reducing the intraoral SARS-CoV-2 load. METHODS: Twelve out of 98 initially screened hospitalized SARS-CoV-2-positive patients were included in this study. Intraoral viral load was determined by RT-PCR at baseline, whereupon patients had to gargle mouth and throat with 20 mL of 1% hydrogen peroxide for 30 s. After 30 min, a second examination of intraoral viral load was performed by RT-PCR. Furthermore, virus culture was performed for specimens exhibiting viral load of at least 103 RNA copies/mL at baseline. RESULTS: Ten out of the 12 initially included SARS-CoV-2-positive patients completed the study. The hydrogen peroxide mouthrinse led to no significant reduction of intraoral viral load. Replicating virus could only be determined from one baseline specimen. CONCLUSION: A 1% hydrogen peroxide mouthrinse does not reduce the intraoral viral load in SARS-CoV-2-positive subjects. However, virus culture did not yield any indication on the effects of the mouthrinse on the infectivity of the detected RNA copies. CLINICAL RELEVANCE: The recommendation of a preprocedural mouthrinse with hydrogen peroxide before intraoral procedures is questionable and thus should not be supported any longer, but strict infection prevention regimens are of paramount importance. TRIAL REGISTRATION: German Clinical Trials Register (ref. DRKS00022484).


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Adult , Aged , Aged, 80 and over , COVID-19 , Female , Humans , Hydrogen Peroxide , Male , Middle Aged , Mouthwashes , Pilot Projects , Prospective Studies , SARS-CoV-2 , Viral Load , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL